總懸浮顆粒物(Total suspended matter, TSM)是水環(huán)境評價的重要參數(shù)之一,它直接影響水質(zhì)狀況,決定著水下光場分布,進而影響水體的初級生產(chǎn)力,TSM是多種營養(yǎng)鹽與污染物吸附的載體。TSM具有強光譜信號,可以有效的通過大氣頂部及地表反射率進行估算。基于波段比的TSM濃度反演模型被廣泛應(yīng)用于沿海和內(nèi)陸水體的TSM估算。中國科學(xué)院東北地理與農(nóng)業(yè)生態(tài)研究所水環(huán)境遙感學(xué)科組科研人員開發(fā)了基于谷歌引擎(Google Earth Engine,GEE)Landsat影像的湖庫TSM反演算法,在中國和全球尺度取得了相關(guān)研究進展。
在中國尺度上,基于2014-2020年中國湖泊實測秋季TSM濃度數(shù)據(jù)(圖1)和GEE平臺的Landsat 天頂角反射率產(chǎn)品,構(gòu)建了精度較高的秋季TSM濃度遙感反演經(jīng)驗?zāi)P停?span lang="EN-US">R2 = 0.87,RMSE=10.16 mg/L,MAPE=38.37%),并獲取了1990-2020年中國50km2以上大型湖庫秋季TSM濃度結(jié)果。以2004年為時間節(jié)點分析了1990-2004年和2004-2020年這兩個時段TSM濃度時空動態(tài)變化,探索了自然和人為因素對湖泊秋季TSM濃度年際變化的響應(yīng)。研究結(jié)果發(fā)現(xiàn)2004年以后在中國第一、第二階梯變清的湖泊數(shù)量在增加,而第三階梯變渾濁的湖泊數(shù)量在增加;在調(diào)控TSM年際變化的主導(dǎo)因素上,第一階梯以湖泊面積和風(fēng)速為主,第二階梯以湖泊面積和NDVI為主,第三階梯以人類活動和NDVI為主(圖2)。
在全球尺度上,基于六大洲(除了南極洲)湖庫搜集了約16400個實測TSM樣點數(shù)據(jù)(圖3),通過同步星地匹配(時間窗口在7天以內(nèi)),共配到9640對實測數(shù)據(jù)與Landsat影像地表反射率數(shù)據(jù)集。對比分析了多種機器學(xué)習(xí)和回歸方法在反演湖庫TSM濃度上的精度和差異性(圖4)。為了克服回歸中數(shù)據(jù)集不平衡的問題,本研究使用了一種合成少數(shù)類過采樣技術(shù)(Synthetic minority over sampling technique for regression with Gaussian Noise, SMOGN)。通過比較,發(fā)現(xiàn)梯度提升決策樹模型(Gradient boosting decision tree, GBDT)、隨機森林模型(Random forest, RF)和極度梯度提升樹模型(Extreme gradient boosting, XGBoost)與SMOGN處理后的數(shù)據(jù)集具有良好的時空可遷移性,具有在不同年份繪制高質(zhì)量Landsat地表反射率圖像的潛力。在所有的模型中,GBDT模型精度(n = 6428, R2 = 0.95, MAPE = 29.8%)和驗證精度(n = 3214, R2 = 0.95, MAPE = 29.8%)最高,其次是RF模型(驗證精度為n = 3214, R2 = 0.86, MAPE = 24.2%),應(yīng)用這兩種模型對全球不同洲的典型湖庫進行驗證,均表現(xiàn)出穩(wěn)定的性能。除此之外,GBDT模型被應(yīng)用到Landsat不同傳感器(TM/ETM+/OLI)的影像用來評估反演的TSM結(jié)果與實測值的差異性,結(jié)果表明該模型在反演全球湖庫TSM濃度的長時序結(jié)果上具有潛力。
圖1 中國湖泊秋季TSM實測樣點分布
圖2 1990-2004年和2004-2020年中國湖泊不同類別秋季TSM濃度(a-d)、年際變化率(e-h)和年際變化趨勢(i-l)的數(shù)量分布
圖3 全球湖庫TSM實測樣點空間分布
圖4 對比分析反演湖庫TSM濃度的不同模型
上述研究成果發(fā)表在國際期刊Science of the Total Environment(IF = 10.753)和International Soil and Water Conservation Research(IF = 6.4)上,均為中國科學(xué)院SCI一區(qū),第一作者分別為中國科學(xué)院東北地理與農(nóng)業(yè)生態(tài)研究所陶慧博士和溫志丹副研究員,宋開山研究員為通訊作者。上述研究得到了國際重點研發(fā)項目(2021YFB3901101)資助。
文章信息:Tao, H., Song, K*., Liu, G., Wen, Z., Lu, Y., Hou, J., Lyu, L., Wang, Q., Shang, Y., Li, S., and Fang, C., 2023. Response of total suspended matter to natural and anthropogenic factors since 1990 in China's large lakes. Science of the Total Environment, 892, 164474. https://doi.org/ 10.1016/j.scitotenv.2023.164474.
Wen, Z., Wang, Q., Ma, Y., Jacinthe, P., Liu, G., Li, S., Shang, Y., Tao, H., Fang, C., Lyu, L., Zhang, B., and Song, K., 2023. Remote estimates of suspended particulate matter in global lakes using machine learning models. International Soil and Water Conservation Research, https://doi.org/10.1016/j.iswcr.2023.07.002